
Softw Syst Model (2014) 13:1117–1139
DOI 10.1007/s10270-012-0285-5

THEME SECTION PAPER

Assessing event correlation in non-process-aware information
systems

Ricardo Pérez-Castillo · Barbara Weber ·
Ignacio García-Rodríguez de Guzmán ·
Mario Piattini · Jakob Pinggera

Received: 31 October 2011 / Revised: 19 July 2012 / Accepted: 20 August 2012 / Published online: 18 September 2012
© Springer-Verlag 2012

Abstract Many present-day companies carry out a huge
amount of daily operations through the use of their informa-
tion systems without ever having done their own enterprise
modeling. Business process mining is a well-proven solution
which is used to discover the underlying business process
models that are supported by existing information systems.
Business process discovery techniques employ event logs
as input, which are recorded by process-aware information
systems. However, a wide variety of traditional information
systems do not have any in-built mechanisms with which
to collect events (representing the execution of business
activities). Various mechanisms with which to collect events
from non-process-aware information systems have been pro-
posed in order to enable the application of process mining
techniques to traditional information systems. Unfortunately,
since business processes supported by traditional information
systems are implicitly defined, correlating events into the

Communicated by Dr. Tony Clark, Balbir Barn, Alan Brown,
and Florian Matthes.

R. Pérez-Castillo (B) · I. G.-R. de Guzmán · M. Piattini
Instituto de Tecnologías y Sistemas de Información (ITSI),
University of Castilla-La Mancha, Paseo de la Universidad 4,
13071 Ciudad Real, Spain
e-mail: ricardo.perez.del.castillo@gmail.com;
ricardo.pdelcastillo@uclm.es

I. García-Rodríguez de Guzmán
e-mail: ignacio.grodriguez@uclm.es

M. Piattini
e-mail: mario.piattini@uclm.es

B. Weber · J. Pinggera
University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
e-mail: barbara.weber@uibk.ac.at

J. Pinggera
e-mail: jakob.pinggera@uibk.ac.at

appropriate process instance is not trivial. This challenge is
known as the event correlation problem. This paper presents
an adaptation of an existing event correlation algorithm and
incorporates it into a technique in order to collect event logs
from the execution of traditional information systems. The
technique first instruments the source code to collect events
together with some candidate correlation attributes. Based on
several well-known design patterns, the technique provides
a set of guidelines to support experts when instrumenting the
source code. The event correlation algorithm is subsequently
applied to the data set of events to discover the best correla-
tion conditions, which are then used to create event logs. The
technique has been semi-automated to facilitate its validation
through an industrial case study involving a writer manage-
ment system and a healthcare evaluation system. The study
demonstrates that the technique is able to discover an appro-
priate correlation set and obtain well-formed event logs, thus
enabling business process mining techniques to be applied
to traditional information systems.

Keywords Business process mining · Event correlation ·
Event model · Case study

1 Introduction

Complex and large organizations are increasingly using
Enterprise Modeling technologies to analyze their business
units, processes and resources, in addition to the information
systems that support these business processes at an opera-
tional level. The principal objective of enterprise architec-
ture modeling is to improve the alignment between business
processes and information systems by making the impact of
planned changes explicit [1].

If the alignment of business processes and information
systems is to be achieved then it is first necessary to obtain

123

1118 R. Pérez-Castillo et al.

an accurate and up-to-date representation of the enterprise
architecture itself [2] (e.g., the design and collection of a
set of business process models using a modeling language).
Unfortunately, these representations cannot be obtained by
ignoring enterprise information systems, since these systems
implement the majority of organizations’ daily operations.
What is more, information systems are not a static entity, but
are maintained and modernized to cope with new business
requirements. Uncontrolled maintenance over time implies
that particular business knowledge is embedded in enterprise
information systems and is not present anywhere else [3].
This problem makes it necessary to discover and explicitly
represent the embedded business knowledge in order to aid
enterprise modeling tasks.

Business process mining techniques can be employed to
discover and reconstitute the underlying business processes
supported by information systems. Business process min-
ing groups well-proven techniques which are used to dis-
cover the embedded business processes that are supported
by existing information systems [4]. All these techniques
employ event logs, which represent the execution of busi-
ness activities, as a common input. Event logs are often
recorded by process-aware information systems (PAIS) [e.g.,
enterprise resource planning (ERP) or customer relationship
management (CRM) systems]. The process-aware nature
of PAIS facilitates the direct registration of events during
process execution. However, there are a wide variety of
non-process-aware information systems (denoted as tradi-
tional information systems in this paper) that do not have
any in-built mechanisms with which to collect events logs.
In other cases, when mechanisms exist to record event logs,
these logs might not contain sufficient information to dis-
cover accurate business processes from traditional informa-
tion systems.

In order to enable the application of process mining tech-
niques to traditional information systems, a previous work by
the authors of this paper presented a technique with which to
collect events from such systems [5,6]. This technique first
injects statements into the existing source code in order to
instrument it. This stage is probably the most complicated
since experts have to choose the parts of the source code that
must be instrumented or ignored. This approach improves the
instrumentation stage by providing a set of guidelines (based
on frequently used and well-proven design patterns) to aid
the instrumentation of source code. Once the source code
has been instrumented, the information system is then able to
record (during system execution) certain events that are even-
tually analyzed and organized in an event log. When applied
to real-life traditional systems, the accuracy of the afore-
mentioned technique has been limited owing to the rather
simplistic event correlation strategy employed [events were
correlated in different process instances (also known as cases)
using various simple heuristics] [6,7]. Since it is possible to

have various instances of the business process running at
the same time, event correlation becomes a key challenge,
which consists of the assignment of each event to the correct
instance. In addition, owing to the fact that business processes
supported by traditional systems are implicitly defined, cor-
relating events into the appropriate execution instance is not
trivial.

1.1 Main contributions

The ultimate goal is to support the event log collection from
traditional (non-process-aware) information systems by cor-
relating events in the appropriate business process instance.
The main contributions of this paper are the following:

1. This paper provides an enhanced technique with which to
obtain event logs from traditional information systems,
thus addressing the event correlation challenge. Two prin-
cipal improvements have been made to the preliminary
technique presented in [6]:

(a) The new technique incorporates a set of instrumen-
tation guidelines with which to support experts when
selecting the most suitable pieces of source code
to be instrumented. These guidelines signify that
the instrumentation of insignificant parts of source
code, such as auxiliary technical code, is no longer
necessary. The candidate correlation data values are
then recorded together with each event by means of
an instrumented version of a traditional system. In
turn, the selective instrumentation of source code
reduces noise problems when events are recorded
(i.e., events that do not represent business activities
will not recorded).

(b) While the previous technique arbitrarily incorporates
the correlation data (i.e., certain data in source code
that is then used to correlate process instances), the
new technique allows various candidate correlation
data to be identified first, and these will then be ana-
lyzed to discover the most accurate correlation data
set.

2. After recording events during system execution, the tech-
nique applies an algorithm to the intermediate informa-
tion to discover the sub-set of correlation attributes and
conditions. The algorithm is adapted from an existing
correlation algorithm initially developed for Web service
based systems [8]. The correlation set is eventually used
to record accurate process instances in a well-formed
event log that can be used to discover the embedded busi-
ness processes.

3. A further key contribution is the empirical validation of
the technique with real-life systems. The case study was
first executed with two real-life traditional systems: a

123

Assessing event correlation in non-process-aware information systems 1119

healthcare system for the collection of patient reported
outcome data and an author management system. To con-
duct the case study and facilitate the adoption of the
technique by industry, the technique has been developed
using database-stored intermediate information and a set
of algorithms implemented as stored procedures [9]. Sec-
ond, the obtained results were compared with regards to
two previous case studies conducted with the same sys-
tems so that the gain of the new approach can be validated.

The main implication of the empirical study is that all the
efforts of the business process mining field can be reused and
applied to traditional information systems. Enterprise model-
ing is thus facilitated when it deals with misaligned business
processes embedded in existing information systems.

The main benefit of this new approach is that it provides
a better event correlation by choosing between certain can-
didate choices, which involves obtaining more accurate and
consistent event logs, and it therefore also mines more accu-
rate business processes.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3 provides a detailed
description of the technique proposed to obtain event logs.
Section 4 shows the design and execution of the multi-
case study. Finally, Sect. 5 discusses conclusions and future
work.

2 Related work

Since business process mining techniques consider event logs
as input, the collection and management of these logs is a
common research topic in literature. For example [10] focus
on ERP systems to obtain event logs from the SAP’s trans-
action data logs. In addition [11] provide a generic import
framework with which to obtain event logs from different
kinds of PAIS, and deals with some interesting challenges
such as event correlation. While these proposals focus on
PAIS, our proposal addresses the collection of event logs
from traditional information systems that do not have any
in-built mechanisms with which to record events.

Moreover, event correlation is an issue of growing impor-
tance within the process mining field. Events can usu-
ally be correlated in different ways. Most authors there-
fore consider event correlation to be a subjective activ-
ity, and most proposals in literature attempt to correlate
events using heuristics [12]. Most correlation event tech-
niques assess certain indicators and check whether they
are under or over a heuristic threshold in order to prune
non-promising correlation attributes and conditions. In this
respect, Burattin et al. [13] focus on event data sets with an
absence of correlation attributes and propose an approach
which introduces a set of extra fields, decorating each sin-

gle activity collected as an event in the log which is known
to carry the information about the process instance. Algo-
rithms are designed using relational algebraic notions in
order to extract the most promising case ids from the extra
fields.

Rozsnyai et al. [14] propose algorithms with which to dis-
cover correlation rules using statistical indicator (e.g., vari-
ance of attribute values) assessments from data sets. Ferreira
et al. [15] similarly propose a probabilistic approach with
which to discover the case id in unlabeled event logs.

Other techniques such as the algorithms proposed by Kato
et al. [16] correlate events by directly analyzing the source
code. This technique attempts to discover the common work-
ing package for a set of events recorded after the execution
of a particular piece of source code.

Moreover, Motahari-Nezhad et al. [8] propose a set of
algorithms with which to discover the necessary correlation
attributes and conditions (e.g., conjunctive and disjunctive
conditions grouping two or more correlation attributes) from
the available attributes of Web service interaction logs. This
paper improves on a previous technique used to retrieve event
logs from traditional systems [6], which employs certain
algorithms to discover the correlation set as suggested by
Motahari-Nezhad et al. [8]. While the algorithm of Motahari-
Nezhad et al. is applied to Web service logs, the approach
presented herein adapts the algorithm to be applied to tradi-
tional information systems in order to obtain event logs.

Event correlation becomes a non-trivial task as a conse-
quence of the increasing heterogeneity and distribution of
enterprise information systems. Some proposals address the
distribution of heterogeneous event logs. For example, Myers
et al. [17] apply generic distributed techniques in conjunction
with existing log monitoring methodologies in order to obtain
additional insights into event correlation. In addition, Ham-
moud [18] presents a decentralized event correlation archi-
tecture. Decentralized event correlation approaches are not,
however, within the scope of this paper.

3 Technique used to obtain event logs

The challenge of the technique presented in this paper lies
in the generation of event logs from traditional information
systems by paying special attention to the correlation of the
event. Despite the existence of technologies with which to
collect execution traces from java virtual machine (JVM) and
other automatic logging mechanisms, this technique relies
on the instrumentation of source code with the aid of experts
since it filters out non-relevant information at runtime.

Figure 1 provides an overview of the technique proposed
to obtain event logs from traditional information systems,
which consists of four main stages:

123

1120 R. Pérez-Castillo et al.

Information
System

Instrumented
Information

System

Execution
Event

Repository

Algorithm to
Discover

Correlation Sets

Optimal
Correlation

Set

Algorithm to
Generate Event

Logs
Event Log

(MXML File)

S1. Instrumentation
of Traditional

Information System

S2. Event
Collection During
System Execution

S3. Discovery of
the Correlation Set

S4. Generation of
Event Logs

E1. Process delimitation
E2. Domain-specific code
E3. Mapping start/end
activities with callable units
E4. Correlation attributes

Fig. 1 An overview of the technique proposed to obtain event logs

1. The objective of the first stage is to instrument traditional
systems so that they can collect events during their exe-
cution. Experts identify certain information such as can-
didate correlation attributes, whose runtime values will
then be collected together with each event (cf. Sect. 3.1).
This approach extends the previous technique with a set
of guidelines for business experts in order to facilitate the
instrumentation of source code.

2. In the second stage, the modified system is executed and
events are progressively recorded. As a result, events and
their respective attributes are then stored in a database in
an intermediate format (cf. Sect. 3.2).

3. The third stage applies an adaptation of the algorithm
proposed by [8] to the event data sets in order to discover
the set of attributes and conditions needed to correlate
events (cf. Sect. 3.3).

4. Finally, the last stage applies an algorithm by consider-
ing the correlation set in order to correlate each event
with its corresponding process instance (cf. Sect. 3.4).
A standard-format event log is therefore obtained from
the traditional system.

3.1 Instrumentation of traditional information systems

Since traditional information systems do not have any built-
in mechanisms with which to record events concerning the
business processes executed, this stage attempts to instrument
thus enabling them to record events (see Fig. 1).

This stage is semi-automatic. A parser syntactically ana-
lyzes the source code (statement by statement) and automat-
ically injects statements into particular places in the code in
order to collect events during system execution. Statements
are injected into callable units (pieces of source code that can
be invoked, e.g., Java methods, C procedures or Visual Basic
functions, among others). The tool used to inject statements
can easily be extended with parsers in order to support differ-
ent programming languages since it follows a plugin-oriented
architecture.

This work follows the ‘a callable unit/a business activ-
ity’ approach proposed by Zou et al. [19], i.e., callable units
are the generic elements into which the parser injects state-
ments to record an event corresponding to the execution
of a business activity. However, not all the executions of

123

Assessing event correlation in non-process-aware information systems 1121

Table 1 Steps used to instrument source code

Id Step Deliverables Aided by

E1 Delimit processes Process names, in addition to their
initial and end business activities

Documentation of organization

E2 Indicate business domain code to
be instrumented

Set of source code files and packages Experts’ guidelines

E3 Map start/end activities with callable units Pairs of start/end business
activities selected in E1 and
callable units (i.e., java methods)

System analysts

E4 Provide candidate correlation attributes Set of classifiers (i.e., Java classes or interfaces) List of all possible classifiers
belonging to the code selected in
E2

callable units have to be recorded as events. Some callable
units such as fine-grained or technical callable units do not
correspond to events and must be discarded. Injection into
the appropriate place is consequently aided by information
provided by experts (see Fig. 1). These experts, who have
business process and information system skills, identify the
following information through the use of four steps (see
Table 1).

3.1.1 Delimiting business processes

Firstly, business experts delimit business processes in Step
E1. This delimitation is carried out by providing the name of
tentative business processes in addition to the start and end
activities of these processes. This information is necessary
owing to the fact that the definition of business processes in
non-process-aware information systems is not implicit, since
these systems are oriented towards procedures or functions
rather than processes [5]. This information is then used to
associate additional information during the following steps,
which provide the source code to be instrumented (Step E2),
a mapping between the start/end activities and the pieces of
source code that support them (Step E3).

3.1.2 Choosing domain code to be instrumented

The source code of traditional information systems can be
classified as either (1) problem domain code (also known
as business or domain code) which supports the business
activities of the underlying business processes or (2) solution
domain code (also known as technical code) which supports
auxiliary code for the first kind of code. In order to reduce
potential noise in the event log, which is caused by techni-
cal source code (i.e., auxiliary code that does not support
any business rule in the system), the business experts also
examine the legacy source code and select those directories,
files or sets of callable units that support business activities
(i.e., they select the callable units belonging to the problem
domain) (see E2 in Table 1).

This selection can be quite challenging for business
experts since documentation is often missing or mislead-
ing. Even when a clear and rich documentation is available,
experts need to acquire the best program comprehension to
provide a good selection of the domain code. We have dealt
with this challenge by considerably extending the previous
technique through the development of a set of guidelines to
support this endeavor. In order to effectively select the code
to be instrumented, business experts are advised to discard,
in a first step, whole code packages (e.g., by considering the
architectural characteristics and design patterns used in the
system) and to then, in a next step, analyze the remaining
packages. This second step is typically required, since code
packages do not always clearly separate business code from
technical code (we refer to this as delocalization and the
interleaving challenge [20]).

Figure 2 shows a characteristic architecture of an object-
oriented system design which is organized in three layers and
includes a set of well-known design patterns. Class names
represent the role each class plays in a certain design pat-
tern. The classes highlighted in Fig. 2 represent the kind of
classes that should eventually be instrumented according to
the following guidelines. These guidelines are discussed and
illustrated using the two case studies described in Sect. 4 [i.e.,
computer-based health evaluation system (CHES), a health-
care system for the collection of patient reported outcome
data; and AELG-Members, an author management system].

G1. Check for three-tier architecture

When selecting the code packages to be instrumented it may
be helpful to consider the architectural characteristics of the
system under investigation. Many system designs follow the
three-tier design pattern, which consists of the decomposi-
tion of a system architecture into three layers [21]: (1) the
domain layer, which supports all the business entities and
controllers, and can thus be considered as a business domain
code; (2) the presentation layer, which deals with the user
interfaces; and (3) the persistency layer, which handles the
data access. For the instrumentation, only the domain layer is

123

1122 R. Pérez-Castillo et al.

presentation

Frame2

Frame1

business

Abstrac1

Entity3Controller

Facade

Entity1

Entity2

Abstract2

Observer

persistency

<<Singleton>>

DBBroker

Entity2DAO

Entity3DAO

Observer

Entity2

Frame1

Frame2

Facade

Controller

Abstrac1

Abstract2

Entity3

Entity2DAO

Entity1

Entity3DAO

<<Singleton>>

DBBroker

Fig. 2 Frequent system design following the three-tier architecture and other design patterns

relevant, whereas the presentation layer and the persistency
layer typically comprise auxiliary code. The business expert
can exploit the fact that in many cases the different layers are
organized into separate code packages and can thus be rela-
tively easily identified and discarded from instrumentation.

For example, both systems under study have at least these
layers. CHES is an extensible systems based on a set of plug-
ins. However, CHES has some plug-ins that are in charge of
the graphical user interface and others that are in charge of the
management of the business entities. The AELG-Members’
design is structured in four packages: model, view, controller
and util. The model and controller packages correspond to the
business layer, the view package is related to the presentation
and the util package is associated with persistency and other
auxiliary operations.

After discarding whole code packages based on the appli-
cation’s architecture, e.g., three-tier architecture, business
experts can identify further classes to be discarded based on
the usage of other design patterns. We explicitly state guide-
lines for various design patterns here. Similar guidelines can
be derived for other design patterns. Design patterns are often
applied in order to easily and quickly separate business code
and technical code in a non-coupling manner, and they can
thus serve as heuristics with which to instrument code.

G2. Check for observer classes

Most system designs are optimized in order to reduce the code
coupling between packages or classes [21]. Many designs
therefore implement the observer pattern [22], which defines
a one-to-many dependency between objects so that when one
object changes state, all its dependents are automatically noti-
fied and updated. This pattern is often used to reduce coupling
between the presentation and domain layer since all the dif-
ferent views in the user interface are notified by the observer

class when the domain classes change their state. It is sug-
gested that domain experts should seek the occurrence of the
observer pattern in the code in order to check whether the
respective classes can be discarded. If observers are utilized
to update the user interface, observer classes can safely be
discarded. On the contrary, if observers perform operations
on domain code, business experts should check whether the
domain code should be instrumented and observers can be
discarded.

CHES implements the observer pattern since it provides
different plug-ins which are in charge of the presentation
and the business domain, which are not coupled. This signi-
fies that a different presentation plug-in could be used in the
CHES. In the case of CHES, the classes that implement the
observer pattern do not contain the business domain code to
be instrumented and could be discarded.

G3. Check for data-access object (DAO) pattern

Another pattern that can frequently be found is the DAO pat-
tern [23]. This design pattern provides a technique with which
to separate object persistence and data access logic from any
particular persistence mechanism. The DAO approach pro-
vides the flexibility needed to change an application’s persis-
tence mechanism over time without the need to re-engineer
application logic which interacts with the persistency layer.
DAO classes are often used in the persistency layer to
stores/retrieve a snapshot of the internal state of an object
when it becomes persistent in a database. DAO classes there-
fore constitute potential candidate classes for being discarded
from the instrumentation phase.

AELG-Members contains a DAO class in the model pack-
age (the business layer) for each business entity class. For
example, the AuthorDAO class is associated with the Author
class, the MemberDAO class is associated with the Member

123

Assessing event correlation in non-process-aware information systems 1123

class, and so on (see Fig. 2). In this case, all the DAO classes
are discarded in order to permit instrumentation.

G4. Check for object factories

Code packages that represent business code often have many
classes which represent business entities (e.g., customer,
account, invoice, product, etc.). These entities are sometimes
instantiated by means of creational patterns such as the fac-
tory method or abstract factory. These patterns have in com-
mon the usage of abstract classes in hierarchical structures,
together with concrete leaf classes with which to instantiate
different business domain objects [22]. Owing to the fact that
abstract classes cannot be instantiated (and the instrumenta-
tion will not therefore have any effect) only the leaf classes
in the inheritance tree of these patterns should be considered
as the entities to be instrumented (see highlighted classes in
Fig. 2).

AELG-Members implements various abstract factories.
For example, this system defines an abstract factory with
which to create different kinds of queries within the aelg.
model.query package. In this case, leaf classes (i.e., Query-
BooleanTable, QueryMultiValueTable, etc.) should be instru-
mented while the abstract classes like QueryElement is are
discarded.

G5. Check for singleton classes

Many system designs apply the singleton pattern [22], which
ensures that a class has only one instance, and provides a
global point of access to it. This is often used with technical
classes that provide a clear and independent auxiliary func-
tionality (e.g., a database access manager). If the singleton
pattern is used, then these classes should be considered as
technical code and discarded.

Both CHES and AELG-Members contain several single-
ton classes. For instance, in the case of AELG-Members there
is a clear example—the DateUtil class, which is in charge of
managing dates.

G6. Check for facade classes

Many systems provide a unified access to a set of functional-
ities or services in a subsystem which are known as facades
[22]. A facade defines a higher-level interface that makes
the subsystem easier to use. Facades do not contain addi-
tional business domain code, and can therefore be discarded
(see Fig. 2). However, they might call operations in business
domain code that have to be instrumented. If a facade class
is detected, it is necessary to check whether operations in
domain classes are invoked by the facade and discard the
facade.

AELG-Members contains three different facades within
the business layer (i.e., in the model package): Authors-
Facade, MembersFacade and CategoriesFacade. These

classes respectively collect the set of available actions that
can be carried out with the systems concerning authors, mem-
bers of the organization and author categories. The facade
classes were discarded during the instrumentation of source
code since the end-point methods (which are called from the
facade) are available in others classes of the business domain
layer.

These guidelines entail a set of heuristics to help business
experts. However, this set of guidelines has some limitations.
For example, in our particular case, the guidelines are useful
for object-oriented systems following a tier-based architec-
ture. However, the initial set of guidelines could be extended
with more guidelines based on different patterns, or even
adapted to other kinds of architectures or platforms. Never-
theless, we believe that an instrumentation aided by a set of
guidelines based on design patterns provides better results
than instrumentation without this kind of guidelines.

3.1.3 Mapping start and end activities

Thirdly, experts also provide a mapping between the set of
start and end business activities and the callable units sup-
porting them (see E3 in Table 1). This information is needed
to know which callable units are associated with the start or
end points of the underlying business process that business
experts had previously established in step 1.

3.1.4 Identifying candidate correlation attributes

Finally, experts identify those code elements that can be
treated as candidate correlation attributes (see E4 in Table 1).
This stage is supported by another improvement to the tool
presented in [6], which additionally supports the identifica-
tion and addition of candidate correlation attributes. These
candidate attributes will be used to correlate events (cf.
Sect. 3.3). The selection of candidate correlation attributes
is the most important task in this stage, since an incom-
plete list of candidate attributes may lead to a non-suitable
correlation. The tool provides experts with all the possible
selectable attributes: (1) all the parameters that appear in
callable units and (2) the output and fine-grained callable
units that are invoked within those callable units that are
considered to be collected as events. Experts then select a
subset of candidate correlation attributes. During the static
analysis of source code, the information concerning candi-
date correlation, and other information provided by experts
is automatically injected with tracing statements in callable
units, thus enabling event collection.

Figure 3 provides an example of the results obtained after
instrumenting a Java method of one of the systems under
study (cf. Sect. 4). The two tracing statements (see high-
lighted statements) are injected at the beginning and at the
end of the body of the method. Those candidate correlation

123

1124 R. Pérez-Castillo et al.

public class SocioFacadeDelegate {
[...]
public static void saveAuthor(AuthorVO author) throws InternalErrorException {

writeDBEvent("SocioFacadeDelegate.saveAuthor", "Author Management", "", "start",
false, false, -1, false, 2, 8, "", "" + author.getId(), "" + author.isHistorico(),
"" + author.getNumeroSocio(), "", "" + author.getCotas());

try {
SaveAuthorAction action = new SaveAuthorAction(author);
PlainActionProcessor.process(getPrivateDataSource(), action);

} catch (InternalErrorException e) {
throw e;

} catch (Exception e) {
throw new InternalErrorException(e);

}
writeDBEvent("SocioFacadeDelegate.saveAuthor", "Author Management", "", "complete",

false, true, -1, false, 2, 8, "", "" + author.getId(), "" + author.isHistorico(),
"" + author.getNumeroSocio(), "", "" + author.getCotas());

}
[...]

}

Fig. 3 Example of code instrumentation for a method of an author management system

attributes that are present in a method (e.g., a parameter or
variable) are automatically injected into the tracing state-
ments, i.e., the respective variables are in the set of para-
meters of the invocation to the method ‘writeDBEvent’ (see
Fig. 3). However, not all correlation attributes defined by
experts are present in all methods (e.g., owing to the absence
of a particular variable). In this case, the respective parameter
of the method ‘writeDBEvent’ (i.e., the tracing statement) is
an empty string (“ ”). As a result, during the execution of
this method, the runtime value (or an empty value) will be
recorded together with the name of the attribute and the event
(the name of the method representing the business activity).

Despite the fact that the instrumentation stage is semi-
automatic and aided by business experts’ opinion, the tech-
nique (through its respective supporting tool) is scalable for
both larger business processes and a large number of different
processes supported by a system. This is owing to the fact
that the time taken to statically analyze larger information
systems would be greater, while the time taken by experts
to provide information to aid in the instrumentation would
often be the same, since it does not depend on the size of
business processes.

3.2 Collection of events

The event collection stage is in charge of the appropriate gen-
eration and storage of events throughout system execution.
The instrumented system is executed and (when an injected
statement is executed) records events together with the value
of all the candidate correlation attributes available in that
callable unit (see Fig. 1). The new technique has a key dif-
ference as regards the preliminary technique. While other
similar techniques [6,7] build an event log on the fly (i.e.,
when an event occurs it is directly recorded in the event log),
this new technique stores all the information about events
and their candidate correlation attributes in an intermediate
database for later analysis. Another important difference is
that the new technique collects various candidate correlation
attributes whilst previous techniques collect only the correla-
tion attribute selected by experts during the instrumentation
stage.

This technique uses a relational database context in a sim-
ilar way to other techniques such as [8]. Relational databases,
in comparison to other options like XML files, facilitate the
implementation of algorithms to discover the correlation set

Fig. 4 Database schema for event and correlation attribute collection

123

Assessing event correlation in non-process-aware information systems 1125

Fig. 5 Data set example obtained from CHES, one of the systems used in the assessment

from a vast amount of data with a good performance (cf.
Sect. 3.3).

Figure 4 shows the relational database schema used to
represent the intermediate event information. The EventLog
table is used to represent different logs obtained from dif-
ferent source systems. The Event table contains all the dif-
ferent events collected, including the business task executed,
type (start or complete), originator, execution timestamp, two
columns to indicate whether the executed task is the initial
or final task in a process, and the process name. Correla-
tionAttribute is a table related to the Event table and con-
tains the runtime values of candidate correlation attributes
together with the reference to the event for which the corre-
lation attribute was collected.

Candidate correlation attributes are combined by means
of correlation conditions which are then used to correlate
events. According to the categorization of Motahari–Nezhad
et al. [8], two kinds of correlation conditions are differenti-
ated: atomic conditions and complex:

1. Atomic conditions represent key-based conditions which
compare two correlation attributes. For instance, condi-
tion1:attribute1=attribute2 signifies that two events will
be correlated if the value of attribute1 of the first event is
equal to the value of attribute2 of the second event under
evaluation. These conditions are stored in the Atomic-
Condition table (see Fig. 4).

2. Complex conditions evaluate the simultaneous aggrega-
tion of two different conditions, which are combined by
a logic operator, e.g., conjunction (AND) or disjunction
(OR). For example, condition3: condition1 AND condi-
tion2 evaluated for two events signifies that both atomic
conditions (condition1 and condition2) must be simulta-
neously met for the two events. The Complex-Condition

table represents this information in the database schema
(see Fig. 4).

Figure 5 shows, as an example, a view of the data collected
after source code instrumentation. It contains the aforemen-
tioned data: task, type, originator and timestamp for each
event recorded, in addition to correlation attributes and their
values.

3.3 Discovering the event correlation set

After the collection of events and candidate correlation
attributes, the intention of the third stage is to discover the
event correlation set. Event correlation deals with the defin-
ition of relationships between two or more events in order to
discover which events belong to the same business process
execution (i.e., process instance). Event correlation is impor-
tant in the identification of business processes in traditional
information systems, since the business processes executed
are not explicitly defined through the existing source code [5].

Figure 6 shows an overview of the event correlation chal-
lenge. Each business process can be executed several times,
and even in parallel. Each execution is known as a process
instance. All the events recorded during system execution
must in turn be correlated into the correct process instance.
For example, two different events may refer to the execution
of the same business activity (e.g., receive invoice). How-
ever, they may belong to two different instances (e.g., two
instances that are executed for two different customers).

An adaptation of the algorithm described in [8] is applied
to discover the correlation set (see Algorithm 1). A corre-
lation set consists of (1) a set of atomic conditions (i.e.,
equal comparisons between pairs of correlation attributes)
and (2) a set of complex conditions (i.e., conjunctive com-

123

1126 R. Pérez-Castillo et al.

Fig. 6 Event correlation
challenge

E
V

E
N

T
S

PR
O

C
E

SS

IN
ST

A
N

C
E

PR
O

C
E

SS

A D
B

C

A DC A DB

A

D

A C D

D

A

B C
B

A
B

D
B

C

B

C

parisons between pairs of atomic conditions). Unlike [8],
this technique does not consider disjunctive conditions since
these conditions are only needed for heterogeneous systems
to detect synonyms of certain correlation attributes [8], and
these kinds of systems are not within the scope of this paper.

3.3.1 Discovery of atomic conditions

Algorithm 1 first considers every possible combination of
two candidate correlation attributes which may be involved
in atomic conditions (lines 1–3). The algorithm then prunes
the non-interesting conditions (i.e., the less promising con-
ditions) using the following three rules and paying attention
to different criteria.

Algorithm 1. Discovery of the correlation set

Rule 1. Pruning using distinct ratio of attributes

The first rule attempts to prune atomic conditions accord-
ing to the different values of the candidate correlation
attributes. For example, let us imagine the candidate attribute
isPremium, which is defined about customers and probably
has two possible values, true or false. If this attribute is used
as a correlation attribute, the technique would split the data
set of events into only two process instances for premium
and non-premium customers, which would not be a good
correlation.

The first rule prunes candidate atomic conditions by eval-
uating the DistinctRatio (Eq. 1), which indicates the cardi-
nality (i.e., the number of different values) of an attribute in
the data set regarding its total number of non-null values.

When attributes of atomic conditions are the same, the
distinct ratio must be above the alpha threshold or distinct
to 1 (see line 4 of Algorithm 1). Alpha (Eq. 2) quantifies the
variance of values of every attribute regarding the size of the
event data set. Alpha is consequently used as the threshold
with which to detect global unique values. When the Distinc-
tRatio of an attribute is below alpha or one, this signifies that
the attribute contains a global unique value and the atomic
condition with this attribute can therefore be pruned since
this attribute cannot be used to correlate events in two or
more process instances.

Distinct Ratio(ai) = distinct (ai)

nonNull(ai)
(1)

α = distinctM AX (ai)

Number O f Events
(2)

Rule 2. Pruning using the shared ratio of two different
attributes

Rule 2 is similar to Rule 1 but works with two different corre-
lation attributes rather than with atomic conditions involving

123

Assessing event correlation in non-process-aware information systems 1127

the same attribute. Rule 2 uses SharedRatio (Eq. 3) rather
than DistinctRatio to represent the number of distinct shared
values (regarding their non-null values) for two different
attributes. The atomic condition formed from two differ-
ent attributes will be pruned when the Shared Ratio of both
attributes is above the alpha threshold (see line 5 of Algorithm
1). This rule also discards atomic conditions that correlate all
the events in a single process instance.

Shared Ratio(ai , a j)= distinct (ai , a j)

max(distinct (ai), distinct (a j))

(3)

Rule 3. Pruning using the process instance ratio

Atomic conditions are pruned according to the process
instance ratio (Eq. 4). This rule checks that the partitioning
of the future event log does not only have one or two long
instances, or many short instances. PIRatio (Eq. 4) is mea-
sured as the estimated number of process instances (Num-
berPI) (Eq. 5) divided into non-null values for both attributes.

P I Ratio(ai , a j) = |Number P I (ai , a j)|
nonNull(ai , a j)

(4)

Number P I (ai , a j) = {ν : ∃ e, e′ ∈ Events|
e.attribute1=ai e′.attribute2=a j

ν = e.attribute1.value = e′.
attribute2.value

e.timestamp > e′.timestamp} (5)

NumberPI (Eq. 5) is in turn heuristically assessed as the
distinct attribute values for all the different couples of events
(executed in a row) containing both attributes. The algorithm
proposed by Motahari-Nezhad et al. [8] first calculates a set of
correlated event pairs, and then suggests computing the num-
ber of process instances as the recursive closure over the set of
these event pairs. In contrast to that algorithm, our approach
estimates NumberPI by considering the number of possible
pairs of correlated events. This change has been made since
the recursive closure evaluation is time-consuming [the com-
plexity of graph closure algorithms in literature is often O(2n)

since they check each pair of nodes for the remaining pairs].
On the contrary, the results expected when using this pro-
posal can be considered as a heuristic approximation with
a lower computational cost (i.e., O(n) since this technique
only evaluates the list of event pairs). This is a key differ-
ence as regards the algorithm proposed by Motahari-Nezhad
et al. [8].

Atomic conditions will be discarded when the PIRatio
value is below alpha or above beta (line 6 of Algorithm 1).
Beta (Eq. 6) is another of the thresholds used to evaluate
the average length of the outgoing instances. For instance,
a beta value of 0.5 (a value commonly used) signifies that

conditions leading to process instances with a length above or
equal to half the total events would be discarded. Higher beta
values allow fine-grained process instances to be obtained,
while lower values provide larger process instances. The beta
threshold is often established between 0.25 and 1, since a beta
threshold that is equal or close to 0 may correlate most events
in a single, larger process instance.

In practice, the final beta value as provided by business
experts is established at the end of an iterative process dur-
ing which experts can test different beta values. Correlation
sets obtained with different beta values only have small dif-
ferences. In fact, the beta value only represents the degree
of restriction regarding the incorporation (or otherwise) of
additional correlation attributes into the chosen conditions.

βε[0.25, 1] (6)

3.3.2 Discovery of conjunctive conditions

After atomic conditions have been filtered out, the algo-
rithm (see Algorithm 1) builds all the possible conjunctive
conditions based on the combination of outgoing atomic
conditions (lines 7–11). These conditions are then pruned
by applying Rules 4 and 5 (see lines 13–14 in Algo-
rithm 1). New conjunctive conditions are then iteratively
evaluated by combining the remaining previous conditions
(lines 15–19).

Rule 4. Pruning using the monotonicity

The first heuristic (line 13) applied to filter out conjunctive
conditions is based on the monotonicity of the number of
process instances. This heuristic is based on the idea that
the number of process instances for a conjunctive condition
is always higher than (or at least equal to) the number for
their atomic conditions in isolation. This assumption is often
true, since complex conditions are more restrictive, unless
complex conditions are subsumed in one of their atomic con-
ditions. Conjunctive conditions that do not increase the num-
ber of process instances are therefore pruned. The number of
process instances obtained through conjunctive conditions is
evaluated as ConjNumberPI (Eq. 7) and is based on (Eq. 5),
which is defined for simple conditions, and is measured by
intersecting both component conditions of the conjunctive
condition.

Conj Number P I (ci , c j) = Number P I (ci .a1, ci .a2)

∩ Number P I (c j .a1, c j .a2) (7)

This rule entails another important difference with regard
to the algorithm presented in [8], since this algorithm con-

123

1128 R. Pérez-Castillo et al.

Fig. 7 MXML metamodel to
represent event logs

siders the number of process instances (but not the length of
instances) to evaluate the monotonicity.

Rule 5. Pruning using the conjunctive process instance
ratio

The algorithm also applies the same rules concerning the
partitioning of the log to the conjunctive conditions (see
line 14 in Algorithm 1). The ratio of process instances is
thus also evaluated for conjunctive conditions (ConjPIRatio)
(Eq. 7). When ConjPIRatio is below the alpha or above the
beta threshold the conjunctive condition is discarded.

In conclusion, the proposed algorithm adapts the algo-
rithms provided by Motahari-Nezhad et al. [8] in order to
adjust it to traditional information systems. There are two
main changes, as seen above in this section: (1) the way in
which the expected number of process instances is calcu-
lated for each condition; and (2) the monotonicity heuris-
tic which only takes into account the estimated number of
process instances.

3.4 Generating event logs

After obtaining the correlation set, the fourth stage discovers
process instances using the correlation set obtained in order
to build the final event log, which will be written following
the Mining XML (MXML) format [24].

MXML is a notation based on XML and is the most com-
mon format used by most process mining tools [24]. Another
interesting standard is extensible event stream (XES) [25],
which is also used to record event logs in the same way
as MXML. However, while MXML particularly focuses on
process mining scenarios, XES provide a generally acknowl-
edged format to support general data mining, text mining,
and statistical analysis by prioritizing the extensibility and

variability of logs rather than providing a well-known format
supported by most common mining tools. This approach uses
MXML because of its degree of maturity and the absence of
extensibility needs in the main research goal.

The MXML format, as presented in the MXML meta-
model shown in Fig. 7, represents an event log as a set of
Process elements that contain several ProcessInstance ele-
ments, each of which has a sequence of AuditTrailEntry ele-
ments (see Fig. 7). Each AuditTrailEntry element represents
an event and consists of four main elements: (1) the Work-
flowModelElement that represents the activity executed; (2)
the EventType showing whether the activity is being executed
(start) or had been completed (complete); (3) the Originator
identifying the user who started or completed the activity;
and (4) the Timestamp recording the date and time of the
event. All of these elements may also have a Data element
that consists of a set of Attributes including related informa-
tion.

In order to obtain the final MXML event logs, Algorithm
2 correlates all the events of the intermediate data set in its
process instance within the event log. The algorithm explores
all the candidate events pairs, i.e., those pairs that belong to
the same process and were executed in a row (line 2). When
an event was recorded as the start point of a process, the
target process takes this name (lines 3–5). For each candidate
event pair, all the atomic and conjunctive conditions of the
correlation set are evaluated (line 7). If the event pair meets
all the conditions, then it is a correlated event pair and these
events are then put into the correct instance, and the instance
is in turn added to the process (lines 9–10). Process instances
are previously identified by means of the specific values of the
events’ attributes involved in the correlation set (line 8). Each
process found during the event pair exploration is eventually
added to the event log (line 13) together with all the process
instances discovered.

123

Assessing event correlation in non-process-aware information systems 1129

Algorithm 2. Discovery of process instances

Business process can subsequently be discovered from the
MXML event logs by applying different well-known tech-
niques and algorithms developed from the business process
mining field [4].

4 Empirical study

The technique used to obtain event logs by discovering cor-
relation sets has been empirically validated through an indus-
trial case study by implementing and applying the technique
to two traditional information systems. The empirical study
has been rigorously planned and conducted by following
the formal protocol for conducting case studies proposed by
Runeson et al. [26]. The following sections present a detailed
description of the main stages defined in the formal proto-
col: background, design, case selection, execution and data
collection, analysis and interpretation, and finally validity
evaluation.

All of the software artifacts involved in this case study
and the tool developed to support the proposed approach are
available online [9].

4.1 Background

The proposed approach focuses particularly on traditional
(non-process-aware) information systems and focuses on the
correlation of events in the appropriate process instance. As
a consequence, the object of the study is the aforementioned
technique and the purpose of the study is to demonstrate the
feasibility of the technique in terms of its accuracy. The main
research question of the study is therefore MQ.

MQ. Can the technique obtain correlation sets with which
to generate event logs from a traditional system, which
can then be used to discover the business processes sup-
ported by the system?

The study additionally evaluates two secondary research
questions: AQ1 and AQ2. AQ1 evaluates the gain of this new
approach with regard to the previous technique used to obtain
event logs using a correlation event mechanism that only
trusts in single isolated pieces of source code as correlation
sets, which are defined by the user. This secondary question
is evaluated by comparing the result of this study with the
result obtained in a previous study that validated the previ-
ous approach using the same traditional information systems
[6,7]. The AQ2 question analyzes the time taken to discover
correlations sets in order to discover whether the technique
is scalable to huge data sets.

AQ1. How does this technique perform in comparison to
the previously developed technique?
AQ2. How much time does the technique take to discover
correlation sets as regards the size of the data sets?

4.2 Design

The design of the empirical study follows the embedded and
multiple case study design according to the classification pro-
posed by Yin [27]. On the one hand, the study is embedded
since it considers several analysis units within each case.
On the other hand, it is a multi-case study since it considers
two different cases (i.e., two different traditional informa-
tion systems). A multiple case study allows researchers to
analyze within each setting and across settings (i.e., it ana-
lyzes several cases to understand the similarities and differ-
ences between them). On the contrary, a single case study
only allows researchers to understand one unique, extreme
or critical case.

In order to answer the main research questions, the study is
designed following a qualitative research approach by com-
paring a reference model and that obtained. The study first
considers the business process models previously provided
by business experts (the reference models). The study then
obtains an event log through the correlation set and compares
the business process instances collected in the log together
with the reference business process model. The comparison
between models evaluates the degree of conformance of the
model obtained as regards the reference model. This is done
by scoring the number of relevant business activities in com-
mon with the reference business process model. Relevant
activities are considered to conform to the reference process
when they meet three conditions:

123

1130 R. Pérez-Castillo et al.

1. The first condition specifies that the activity must rep-
resent a real-life business operation within the reference
business process model.

2. The second condition ensures that all the relevant activ-
ities preceding the evaluated activity must be recovered
before the activity under evaluation. In order to fulfill
this condition, the predecessor activities can be directly
or indirectly connected to the activity under evaluation,
i.e., there could be non-relevant activities intercalated
between the evaluated activity and its predecessor rel-
evant activities.

3. In a similar manner, the third condition ensures that all
the subsequent activities must be directly (or indirectly)
recovered from relevant activities.

4. Finally, the fourth condition specifies that all the data
objects related to the activity under evaluation have been
also recovered.

Some quantitative measures are additionally considered to
aid the qualitative approach. These measures are: (1) the
number of events in addition to (2) the number of candidate
correlation attributes collected in the intermediate database;
(3) the beta threshold defined in each case, which defines dif-
ferent analysis units; (4) the number of process instances in
the final event log; (5) the time taken to discover the correla-
tion set (see Algorithm 1); and finally (6) the aforementioned
conformance ratio.

4.3 Case selection

The two traditional (non-process-aware) information sys-
tems under study are AELG-Members and CHES. The cases
were selected by following a set of four case selection cri-
teria (see Table 2). C1 is defined to ensure that the system
selected is a real-life information system that is currently
in the production stage and supports the business operation
of an organization or company. C2 ensures that the system
selected is a traditional information system with no built-in
logging mechanism. C3 ensures that the system is sufficiently
large to be able to draw representative conclusions, exceed-
ing 20,000 lines of source code. C4 requires the system to
be based on Java technology, since the supporting tool with
which to instrument traditional systems was preliminarily
developed for Java-based systems. Nevertheless, the tech-
nique is not specifically for Java-based systems, but is based
on the concept of callable units, which can also be applied to
other programming languages by adding a parser for those
languages.

AELG-Members and CHES were selected after evaluating
several available systems according to these criteria. On the
one hand, AELG-Members is an author management system
that supports the administration of an organization of Spanish
writers. From a technological point of view, AELG-Members

Table 2 Criteria for case selection

Id Criterion for case selection

C1 It must be an enterprise system

C2 It must be a non process-aware information system

C3 It must be of a size not less than 20 KLOC

C4 It must be a Java-based system

is a Java standalone application whose architecture follows
the traditional structure in three layers [21]: (1) the domain
layer supporting all the business entities and controllers; (2)
the presentation layer dealing with the user interfaces; and
(3) the persistency layer handling data access. The total size
of the legacy system is 23.3 KLOC (thousands of lines of
source code).

On the other hand, CHES is a healthcare information sys-
tem used in several Austrian hospitals in different areas of
medicine (e.g., oncology, geriatrics, psychiatry, psychoso-
matic medicine) for the collection, storage, and graphical
processing of medical and psychosocial data. CHES also pro-
vides graphical real-time feedback of patient-related data in
order to individualize treatment strategies, and permits indi-
vidual patient and treatment data (e.g., laboratory values,
data from medical interventions, questionnaire data) to be
recorded. The total size of CHES is 91.3 KLOC and is also
a Java application following a three-layer architecture.

Appendix 1 shows the business process supported by
the systems under study which are considered as the ref-
erence business process models. Figure 9 presents the ref-
erence model of the AELG-Members system containing the
main business activities carried out by the writers’ organiza-
tion, which include among other things, author registration,
importing author information from different sources, cance-
lation of memberships, author information management and
payment of fees. The reference model of the CHES system is
shown in Fig. 10 in Appendix 1. The main business activities
of this process are grouped in three lanes. (1) The patient
admission lane manages all the activities needed to provide
the hospital with new patients. (2) The data collection lane is
performed by (a) the hospital staff who send questionnaires
to collect information about the state of patients, and (b) the
patients who fill out the questionnaires. Finally (3) the data
analysis lane contains business activities with which to ana-
lyze information from the questionnaires, and these activities
allow the hospital staff to order treatments or interventions.

4.4 Execution and data collection

The case study was executed by semi-automating all the
stages of the proposed technique with different supporting
tools. The steps carried out during the execution were the
following. These steps also collect certain data to be ana-
lyzed.

123

Assessing event correlation in non-process-aware information systems 1131

Table 3 Source code
instrumentation according to the
guidelines

AELG-Members CHES

Number Discarded Instrumented Number Discarded Instrumented
of classes classes classes of classes classes classes

(%) (%)

Whole system 165 151 8.48 2,491 2,102 15.62

Layers (G1)

Presentation 19 19 0.00 1,797 1,791 0.33

Domain 91 77 15.38 422 39 90.76

Persistency 55 55 0.00 272 272 0.00

Design patterns

Observer (G2) 0 0 0.00 15 15 0.00

DAO (G3) 25 25 0.00 24 19 20.83

Abstract factory (G4) 12 4 66.67 0 0 0.00

Sigleton (G5) 13 12 7.69 17 14 17.65

Facade (G6) 26 26 0.00 51 50 1.96

4.4.1 Step 1: instrumentation of systems under study

Both systems under study were instrumented using the Event
Traces Injector tool [6], which semi-automates the instru-
mentation of source code by considering relevant informa-
tion provided by experts. This tool was modified to support
the collection of additional relevant information from experts
such as the candidate correlation attributes. Two experts (a
systems analyst and a business expert) were selected from
each of the organizations from which the systems under study
were taken.

These experts used the guidelines (cf. Sect. 3.1.2) to deter-
mine the domain business source code to be instrumented.
Table 3 shows the number of classes of source code that
were instrumented in both systems. Table 3 shows the instru-
mentation information for three different viewpoints: the
whole system, the three layers according to guideline G1, and
according to the design patterns considered in the remaining
guidelines. Table 3 provides, in columns: (1) the total num-
ber of classes for each of the aforementioned viewpoints,
(2) the number of classes discarded from the instrumentation
by business experts; and (3) the percentage of source code
instrumented.

The instrumentation results show that most parts of the
source code were discarded according the guidelines. In fact,
the final percentage of instrumented classes was around 8
and 16 % for both systems. The persistency and presenta-
tion layer were completely discarded for both systems except
for six classes in the CHES presentation layer. With regard
to the design patterns, the experts selected business domain
classes in line with the guidelines, with the exception of cer-
tain classes (see Table 3). For instance, in the case of AELG-
Members, there was a class involved in a singleton pattern

Table 4 Candidate correlation attributes selected in the study

Study ID Attribute
ID

Java class Output
method

AELG-Members 1 FeeVO getIdAuthor

2 AuthorVO getId

3 AuthorVO isHistoric

4 AuthorVO getMemberNumber

5 PublicAuthorVO getId

6 AuthorVO getFees

CHES 1 Patient getPatientId

2 Patient getSocialSecurity
Number

3 Patient isActive

4 Questionnaire isCompletely
Answered

5 Questionnaire toString

6 HibernateObject getId

7 Intervention getComment

that was not discarded by experts. Furthermore, in the case
of CHES, some classes involved in the singleton and facade
patterns were not discarded. This was probably because the
experts considered these classes to be relevant classes con-
taining domain methods to be instrumented.

With regard to the candidate correlation attributes to be
collected together with events, six attributes were selected in
the case of AELG-Members (see Table 4). Some attributes
regarding the identification of author were selected first
because the business process focuses on this entity (attributes
1–5). Other attributes related to fees were also selected since
the experts expect process instances to end when an author’s
annual fees are paid (attributes 1 and 6).

123

1132 R. Pérez-Castillo et al.

Table 5 Source code instrumentation results

Feature AELG-Members CHES

LOC 23,339 91,266

Java files 165 822

Processed Java files 16 181

Instrumented callable units 33 186

Static analysis time 4′′ (4,091 ms) 2′47′′ (166,686 ms)

Table 6 Data sets of events and correlation attributes considered in the
study

Study ID Data set ID # Events # Correlation attributes

AELG-Members Small 2,432 10,412

Medium 7,608 33,278

Large 15,305 74,136

CHES Small 9,361 5,236

Medium 26,464 13,825

Large 50,618 25,277

In the case of CHES, seven attributes were selected as
candidate correlation attributes (see Table 4).Some attributes
were selected to identify the patient, such as attributes 1–3.
Other attributes like 4 and 5 were selected by the experts
to detect process instances from the different questionnaires
sent to each patient. Finally, attributes 6 and 7 were selected
to detect the end of each treatment or intervention ordered
for a particular patient.

Table 5 provides relevant information derived from the
source code instrumentation: (1) the number of lines of
source code; (2) the number of Java source code files; (3) the
number of Java files modified according to the domain files
selected; (4) the number of Java methods instrumented; and
finally (5) the total time needed to obtain the instrumented
version of each system.

4.4.2 Step 2: collection of events

The instrumented versions of AELG-Members and CHES
were executed, and the events and candidate correlation
attributes were stored in a SQL Server 2005 database until
sufficient data sets with which to conduct the study had been
collected.

The different configurations were tested by considering
three different sizes of data set (small, medium and large)
(see Fig. 4). In the case of AELG-Members, the selected data
sets contained more than 2,000, 7,000 and 15,000 events. In
the case of the CHES system, the data sets collected contained
more than 9,000, 25,000 and 50,000 events.

4.4.3 Step 3: discovery of the correlation set

Algorithm 1 was then applied to the data sets to discover
the correlation set. Unlike previous stages, this algorithm
was implemented by means of a set of stored procedures
using PL/SQL which executes a set of queries from data sets
(Table 6).

Since the beta threshold (Eq. 6) can be chosen by business
experts [8], the algorithm was applied with four different
values: 0.25, 0.5, 0.75 and 1. Table 7 presents the correlation
sets and the time (s) taken to discover these correlations sets
for each beta threshold value. The correlation sets for AELG-
Members are described in Table 8, and those for the CHES
are described in Table 9.

4.4.4 Step 4: generation of event logs, business process
discovery and conformance checking

After the correlation sets had been discovered, an event log
was generated for each of them by applying Algorithm 2.
This algorithm was also implemented through PL/SQL pro-
cedures in order to achieve a quick access and management
of data sets of events and correlation events.

Six event logs were obtained in total: four logs for the four
different correlations sets discovered from AELG-Members
(see Table 8) and two event logs for the correlation sets
obtained from CHES (see Table 9). These six event logs were
eventually analyzed and compared with the reference models
(see Appendix 1). This was done using the ProM tool [24]
to discover the respective business process models for each
event log. This study particularly used the genetic mining
algorithm implemented in ProM since, according to [28], the
accuracy of the genetic algorithm makes it the most suitable
for this purpose.

Finally, the conformance of each business process model
with the reference model was analyzed according to the
aforementioned qualitative research approach (cf. Sect. 4.2).
Table 10 provides the conformance ratio values for all the
business process models discovered using the correlation sets
discovered in the previous stage.

4.5 Analysis and interpretation

This section analyses all the data collected during the exe-
cution of this study and obtains the evidence chains needed
to answer the research questions previously established. A
brief interpretation of the correlation sets is first provided
(cf. Sect. 4.5.1). The business processes discovered from the
event logs obtained using the correlation sets are then com-
pared with the business processes that were discovered from
event logs obtained by applying a previous simple correlation
technique (cf. Sect. 4.5.2). Finally, the performance analysis
of this technique is presented in terms of the time taken to
discover correlation sets (cf. Sect. 4.5.3).

123

Assessing event correlation in non-process-aware information systems 1133

Table 7 Correlation sets and
time taken to discover them for
each data set and system

Data set Correlation set Time (s)

β = 0.25 β = 0.5 β = 0.75 β = 1 β = 0.25 β = 0.5 β = 0.75 β=1

AELG-Members

Small A C C C 12 15 16 15

Medium A C C C 41 56 55 55

Large B C D D 113 150 151 147

CHES

Small E F F F 44 38 38 38

Medium F F F F 93 90 93 91

Large F F F F 399 409 400 398

Table 8 Four correlation sets
obtained for the
AELG-Members system

Numbers 1–6 refer to attribute
id of Table 4. Letters o–s refer to
atomic conditions

Atomic conditions

A o: 1 = 1 p: 2 = 2 q: 4 = 4 r: 6 = 6

B o: 1 = 1 p: 2 = 2 q: 4 = 4 r: 6 = 6

C o: 1 = 1 p: 2 = 2 q: 4 = 4 r: 6 = 6 s: 5 = 5

D o: 1 = 1 p: 2 = 2 q: 4 = 4 r: 6 = 6 s: 5 = 5

Complex conditions

A o ∧ q p ∧ q

B o ∧ q p ∧ q r ∧ q r ∧ p

C o ∧ q p ∧ q r ∧ q r ∧ p

D o ∧ q p ∧ q r ∧ q r ∧ p o ∧ s

Table 9 Two correlation sets
obtained for the CHES system

Numbers 1–7 refer to attribute
ID in Table 4. Greek letters o to
τ refer to atomic conditions

Atomic conditions

E o: 1 = 1 π : 2 = 2 ρ:3 = 3 ς : 4 = 4 σ : 5 = 5 τ : 6 = 6

F o: 1 = 1 π : 2 = 2 ρ: 3 = 3 ς : 4 = 4 σ : 5 = 5 τ : 6 = 6

Complex conditions

E o ∧ρ π ∧ ρ π ∧ τ

F o ∧ρ π ∧ ρ π ∧ τ ς ∧ σ

Table 10 Conformance
checking for business process
models discovered using
correlation sets

Correlation sets for AELG-Members Correlation sets for CHES

A B C D E F

Tasks in reference model 14 14 14 14 18 18

Tasks in discovered model 13 12 12 9 17 15

Conformance ratio (%) 93 86 86 64 94 83

4.5.1 Interpretation of the obtained correlation sets

Table 7 summarizes the results obtained after carrying out the
case studies. These results show the correlation sets (A, B, C
and D for AELG-Members; and E and F for CHES), which
were obtained for different combinations of data sets (small,
medium and large) and beta values (0.25, 0.5, 0.75 and 1).
Table 7 also shows the time taken to discover each correla-
tion set, in addition to the particular atomic and conjunctive
conditions of each set.

AELG-Members
After obtaining the respective event log and discovering the
respective business process for the AELG-Members system,
it was perceived that the most accurate correlation set was ‘A’,
leading to the business process with the highest conformance
degree (93 %), i.e., the business process discovered using set
‘A’ had the highest number of business activities in common
with the reference business process model.

123

1134 R. Pérez-Castillo et al.

The same conclusion can be stated by analyzing the con-
ditions of correlation set ‘A’ (see Table 7). Set ‘A’ is less
restrictive (in comparison to the other sets) and contains
fewer correlation conditions. Despite this, it contains all the
atomic conditions needed to evaluate the identity of each
writer (i.e., getIdAuthor, gedId and getMemberNumber). Set
‘A’ also contains the atomic condition needed to know when
a fee is paid (i.e., getFees), which signifies that a particular
process instance ends for a writer.

Moreover, with regard to the complex conditions of
correlation set ‘A’, there is a conjunctive condition that
links FeeVo.getIdAuthor with AuthorVO.getId, which sig-
nifies that the fees managed must correspond to the same
writer of a particular process instance. Finally, set ‘A’ also
works well because the categorical correlation attribute
AuthorVO.isHistoric was properly discarded, since these
kinds of attributes (e.g., boolean variables) split the data sets
into only two instances.

The remaining correlation sets (B, C and D) are similar
to correlation set ‘A’, since all these sets contain all the cor-
relation conditions of ‘A’. However, these sets incorporate
more conditions, and although they provide alternative event
correlations, they are more restrictive. This means that some
process instances obtained using ‘A’ could be split into two
or more instances if sets B, C or D were used as the corre-
lation set instead of set ‘A’. These sets led to conformance
values of between 64 and 86 % (see Table 10).

The correlation set ‘A’ was only obtained by employing a
restrictive value for beta (i.e., 0.25) (see Table 7). In spite of
all this, the lower beta value combined with the usage of the
largest data set generated the correlation set ‘B’, which adds
some conjunctive conditions with regard to A. The least suit-
able correlation sets, C and D (since these sets contain more
conditions), were consequently obtained for higher values of
the beta threshold.

CHES

After comparing the two business processes discovered in
the two respective event logs (generated using correlation
sets E and F, respectively), it was noted that the most accu-
rate correlation set was set ‘E’ (see Tables 7, 9). Set ‘E’
led to a conformance value of 94 %, while the conformance
of the business process model discovered using set ‘F’ was
83 % (see Table 10). Although the atomic conditions of
both sets are the same, set ‘E’ is less restrictive than set ‘F’
since it contains only three conjunctive conditions. The sole
difference between both sets is a conjunctive condition in
set ‘F’: (Questionnaire.toString = Questionnarie.toString)
∧ (Questionnarie.isComplete = Questionnarie.isComplete).
However, this conjunctive condition is not necessary because
it is formed of an atomic condition that evaluates the equal-
ity of a categorical correlation attribute such as Question-

narie.isComplete. This attribute is used to indicate whether a
questionnaire has (or has not) been completely filled out by
a patient.

In a similar way to the results obtained for the AELG-
Members system, although set ‘E’ was the most accurate
correlation set discovered, it was only obtained for the small
data set and the lowest beta value (0.25). Indeed, the most
common result was the correlation set ‘F’, since this set was
systematically obtained for most configurations of data sets
and beta values (see Table 7). Although set ‘F’ is not the most
accurate correlation, it does not lead to inaccurate event logs.
In fact, the comparison of sets ‘E’ and ‘F’ shows that the sole
difference was a conjunctive condition.

Another important point is that the correlation set vari-
ability in the case of the CHES is lower than that of the
AELG-Members. This may be because the candidate corre-
lation attributes, in the case of the CHES, were probably
better selected by the experts. This selection by experts can
be considered as a threat to the validity (cf. Sect. 4.6).

4.5.2 Comparison with results of the previous technique

A previous technique used to obtain event logs from tradi-
tional (non-process-aware) information systems developed a
preliminary and coarse event correlation mechanism. This
mechanism considers a particular source code object to cor-
relate all the events. The business processes discovered from
the event logs obtained from the same cases in previous stud-
ies are provided in [6,7].

AELG-Members

In the previous case study with the same system [7], the Java
class ‘AuthorVO’ was selected as the classifier with which to
collect correlation information during the system instrumen-
tation stage. During system execution, the runtime values
of the AuthorVO objects were used to correlate events. As a
result, all the process instances in the event log were obtained
with all the events regarding each writer. Unlike the current
approach, not all the different executions of the reference
business process (see Fig. 9) for each author were detected.
For example, every time a writer pays his/her annual fee, it
should be detected as the end of a process instance. This kind
of aggregation works using any correlation set obtained with
the current approach. However, the previous approach did
not permit all the events of the same writer to be grouped
into fine-grained process instances, since the sole informa-
tion used to correlate events was the AuthorVO objects.

As a result, the business process model discovered in
the event log of the previous study was less accurate (i.e.,
obtained with lower conformance degrees) than the current
one, i.e., the preliminary model was obtained with various
erroneous activities and other missing activities with regard

123

Assessing event correlation in non-process-aware information systems 1135

to the reference business process model. In total, the con-
formance degree was 77 % [7], while that obtained with
the proposed technique is 93 % (obtained with set ‘A’, see
Table 10). The business process obtained with the previous
technique was therefore quite complex, and was visually con-
sidered to be a spaghetti model owing to several crossing
sequence flows.

CHES

In the case of the CHES, the previous study [6] considered the
Java class ‘Patient’ as the classifier to be collected as the cor-
relation information during system execution. Every process
instance in the event log was therefore obtained with all the
events regarding each patient. With the previous technique,
all the different executions of the reference business process
(see Fig. 10) for each patient were not detected, but all the
events for the same patient were grouped together. For exam-
ple, when a new treatment or intervention is ordered for a par-
ticular patient, all the events generated should be grouped in
a different process instance. This correlation strategy works
using any correlation set (sets ‘E’ or ‘F’) obtained with the
current approach but not with the previous approach.

Similarly to the results obtained for the AELG-Members,
all the events of the same patient cannot be grouped into fine-
grained process instances because the sole correlation data
set is the occurrence of Patient objects. The business process
model discovered form the event log of the previous study
was therefore less accurate than the current one. In fact, the
preliminary model was also obtained with various erroneous
and missing activities as regards the reference model. The
sequence flow of the business process model obtained for
the CHES was also quite intricate. In total, the conformance
degree obtained with the previous technique was 64 % [6],
while the conformance degree obtained using the new tech-
nique is 94 % (see Table 10).

4.5.3 Performance analysis

In order to demonstrate the feasibility of the proposal, the
time taken to discover correlation sets was analyzed accord-
ing to the additional question AQ2 (cf. Sect. 4.1).

Moreover, outlier beta values (i.e., 1, and especially 0.25)
lead to shorter times (see Table 7). This is owing to the
fact that outlier values allow the algorithm to quickly prune
non-promising correlation sets, which saves a considerable
amount of time. It should be noted that the time regarding
the beta value is approximately linear.

On the other hand, with regard to the number of events, the
time is non-linear. Figure 8 shows the box charts of the time
taken to discover correlation sets for each data set (small,
medium and large) in both studies. The time is lower for
smaller data sets and higher for larger ones. It would appear
that the trend of the time follows a quadratic function. This

Fig. 8 Box chart for time taken to discover correlation sets in both
cases

is owing to the fact that every event must be checked for all
the remaining events according to the proposed algorithm.

In conclusion, the main research question can be positively
answered. This signifies that the technique is able to correlate
events from traditional systems, and it in turn produces a gain
as regards the techniques previously developed. However, the
time taken to discover the correlation sets is quadratic, and
huge data sets may be time-consuming.

4.6 Validity evaluation

Finally, the validity of the results had to be assessed as unbi-
ased and true for the whole population to which we wished to
generalize the results. This section presents the threats to the
validity of this case study and possible actions to mitigate
them. There are three principal types of validity: internal,
construct and external.

4.6.1 Internal validity

The most important threat to the internal validity is the
fact that the code could be poorly instrumented. The
results obtained clearly depend on the candidate correlation
attributes selected at the beginning of the study. If business
experts select an incomplete or erroneous set of candidate
correlation attributes, the outgoing results could be quite dif-
ferent. In order to mitigate this treat we propose repeating the
study using an iterative approach, in which experts can itera-
tively select or remove certain candidate correlation attributes
according to the results obtained for each iteration. The list of
candidate correlation attributes can thus be iteratively refined.
Alternatively, some additional guidelines will be considered
by considering other kinds of architectures and platform of
legacy information systems such as aspect-oriented systems,

123

1136 R. Pérez-Castillo et al.

non-object-oriented systems, or even different programming
languages to be instrumented.

4.6.2 Construct validity

Correlation sets do not always have to be obtained under
lower beta values (e.g., 0.25). A lower beta value often
implies a more restrictive correlation set and vice versa.
The beta threshold can therefore be established by business
experts depending on the constrain degree to be applied to the
particular set of candidate correlation attributes. This threat
can be addressed by repeating the study with different cases
and different beta values.

Another threat to the construct validity is the fact that the
execution of the instrumented systems was not carried out in
a production environment, and the environment was instead
simulated to collect events. This threat could be dealt with by
executing the instrumented systems in their real environ-
ments.

4.6.3 External validity

Since the study was conducted with only two cases, the
results obtained cannot be generalized to the entire popula-
tion, i.e., to all non-process-aware information systems. This
threat should be mitigated by carrying out more case studies
involving different systems.

5 Conclusions

This paper addresses the problem of obtaining event logs
from traditional (non-process-aware) information systems,
which do not have any in-built mechanisms with which to
record events. Furthermore, it particularly deals with the
event correlation challenge. This challenge attempts to allo-
cate events that have occurred to one of the process instances
that are being executed in a particular moment by a traditional
system.

This paper contributes to the solution of the aforemen-
tioned problem by presenting a technique with which to
obtain event logs from traditional systems, which correlates
events. The technique mainly consists of four stages. The first
stage analyzes and instruments the source code of the tradi-
tional system so that the event collection can be automated.
This stage provides some guidelines to aid experts’ decisions
as to which parts of source code have to be instrumented. The
second stage collects events by means of the execution of the
instrumented system. The third stage discovers the correla-
tion set of attributes and conditions. Finally, the fourth stage
generates event logs by allocating each event according to
the correlation set discovered.

The main benefit of this approach (in comparison with
inspecting the software directly in order to understand how
it supports particular business processes) is that it pro-
vides a dynamic inspection of the business process traces.
Dynamic analysis allows non-executed paths, dead code,
etc. to be discarded. The new approach provides a bet-
ter event correlation by choosing between certain candidate
choices, which involves obtaining more accurate and consis-
tent event logs, and thus also mining more accurate business
processes.

The most important contribution of this paper is an empir-
ical study conducted to demonstrate the feasibility of the
technique in addition to its application in industry. The
study was applied to two traditional industrial information
systems: AELG-Members, an author management system
and CHES, a system for collecting patient reported out-
come (PRO) data. The study collected thousands of events
for later analysis, and obtained different correlation sets
according to different parameters. The correlation sets were
then used to generate different event logs, which were in
turn used to discover business processes. Finally, the mined
business process models were compared with the reference
models.

The analysis of the study’s results shows that the tech-
nique is able to obtain event logs from traditional systems.
However, the correlation set depends on the amount of events
collected and the beta factor (which determines the way in
which process instances are built). Although more collected
events may be a good means to obtain better correlation sets,
the time taken to discover this information increases accord-
ing to a quadratic function. Our work-in-progress is therefore
currently focused on obtaining correlation sets in a more effi-
cient manner (to reduce the response time of the discovery
algorithm) and on effectiveness (to provide accurate correla-
tion sets with fewer events).

The main implications of this work are that event logs,
which are the input for most business process mining tech-
niques, can be obtained from traditional information sys-
tems. All the effort of the business process mining field
can therefore be reused in traditional information systems,
which are common in most companies and organizations.
This work thus contributes towards improving enterprise
modeling efforts in those companies that wish to start model-
ing their enterprise environments for the first time, since they
can use business process mining from their existing informa-
tion system.

Acknowledgments This work was supported by the FPU Spanish
Program and the R&D projects ALTAMIRA (PII2I09-0106-2463),
PEGASO/MAGO (TIN2009-13718-C02-01), MAESTRO (Alarcos
Quality Center) and MOTERO (JCCM and FEDER, PEII11-0366-
9449). Additionally, this work was supported by the University of Inns-
bruck.

123

Assessing event correlation in non-process-aware information systems 1137

Appendix 1: Reference and discovered business process
models

This appendix provides the reference business process mod-
els that are supported by the two traditional information sys-

tems under study. Owing to space limitations, each figure
depicts the reference model and different variations of the
models discovered as regards the reference model in terms
of business tasks that were not discovered by means of the
different correlations sets.

Fig. 9 Reference and discovered business process models of the AELG-Members system

Fig. 10 Reference and discovered business process models of the CHES

123

1138 R. Pérez-Castillo et al.

Firstly, Fig. 9 depicts the reference model of the AELG-
member systems and presents the four variations of business
process models discovered using the correlation sets A, B,
C and D (cf. Sect. 4.4). The missing business tasks for each
correlation data set are highlighted and the correlation set ID
are specified (A, B, C and D).

Secondly, Fig. 10 provides the same information for the
CHES system. In this case, two different business process
models were discovered using correlation sets E and F (cf.
Sect. 4.4).

References

1. Buckl, S., et al.: A meta-language for enterprise architecture analy-
sis. In: Halpin, T. (ed.) Enterprise, Business-Process and Informa-
tion Systems Modeling, pp. 511–525. Springer, Berlin (2011)

2. Barn, B., Clark, T.: Revisiting Naur’s programming as theory build-
ing for enterprise architecture modelling. In: Mouratidis, H., Rol-
land, C. (eds.) Advanced Information Systems Engineering, pp.
229–236. Springer, Berlin (2011)

3. Paradauskas, B., Laurikaitis, A.: Business knowledge extraction
from legacy informations systems. Inf. Technol. Control 35(3),
214–221 (2006)

4. van der Aalst, W., Weijters, A.J.M.M.: Process mining. In: Dumas,
M., van der Aalst, W., Ter Hofstede, A. (eds.) Process-aware Infor-
mation Systems: Bridging People and Software Through Process
Technology, pp. 235–255. Wiley, New York (2005)

5. Pérez-Castillo, R., et al.: Toward Obtaining Event Logs from
Legacy Code. Business Process Management Workshops (BPI’10).
Lecture Notes in Business Information Processing (LNBIP 66–Part
2), pp. 201–207 (2010)

6. Pérez-Castillo, R., et al.: Generating event logs from non-process-
aware systems enabling business process mining. Enterp. Inf. Syst.
J. 5(3), 301–335 (2011)

7. Pérez-Castillo, R., et al.: Process mining through dynamic analy-
sis for modernizing legacy systems. IET Softw. J. 5(3), 304–319
(2011)

8. Motahari-Nezhad, H.R., et al.: Event correlation for process dis-
covery from web service interaction logs. VLDB J. 20(3), 417–444
(2011)

9. Pérez-Castillo, R.: Experiment results about assessing event
correlation in non-process-aware information systems (2012).
http://alarcos.esi.uclm.es/per/rpdelcastillo/CorrelationExp.html#
correlation

10. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale
process mining of SAP transactions. Business Process Intelligence
Workshop (BPI’07). In: LNCS, vol. 4928, pp. 30–41 (2008)

11. Günther, C.W., van der Aalst, W.M.P.: A generic import framework
for process event logs. Business Process Intelligence Workshop
(BPI’06). In: LNCS, vol. 4103, pp. 81–92 (2007)

12. McGarry, K.: A survey of interestingness measures for knowledge
discovery. Knowl. Eng. Rev. 20(1), 39–61 (2005)

13. Burattin, A., Vigo, R.: A Framework for Semi-Automated Process
Instance Discovery from Decorative Attributes. In: IEEE Sympo-
sium on Computational Intelligence and Data Mining (CIDM’11),
pp. 176–183. Paris, France (2011)

14. Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering Event
Correlation Rules for Semi-Structured Business Processes. In: Pro-
ceedings of the 5th ACM international conference on Distributed
event-based system, pp. 75–86. ACM, New York (2011)

15. Ferreira, D., Gillblad, D.: Discovering process models from unla-
belled event logs. In: Dayal, U. (ed.) Business Process Manage-
ment, pp. 143–158. Springer, Berlin (2009)

16. Kato, K., Kanai, T., Uehara, S.: Source code partitioning using
process mining. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
Business Process Management, pp. 38–49. Springer, Berlin (2011)

17. Myers, J., Grimaila, M.R., Mills, R.F.: Adding Value to Log Event
Correlation Using Distributed Techniques. In: Proceedings of the
Sixth Annual Workshop on Cyber Security and Information Intel-
ligence Research, pp. 1–4. ACM, Oak Ridge (2010)

18. Hammoud, N.: Decentralized Log Event Correlation Architecture.
In: Proceedings of the International Conference on Management of
Emergent Digital EcoSystems, pp. 480–482. ACM, France (2009)

19. Zou, Y., Hung, M.: An Approach for Extracting Workflows from
E-Commerce Applications. In: Proceedings of the Fourteenth Inter-
national Conference on Program Comprehension. IEEE Computer
Society, pp. 127–136 (2006)

20. Ratiu, D.: Reverse Engineering Domain Models from Source Code.
In: International Workshop on Reverse Engineering Models from
Software Artifacts (REM’09), pp. 13–16. Simula Research Labo-
ratory, Lille, France (2009)

21. Eckerson, W.: Three tier client/server architecture: achieving scal-
ability, performance and efficiency in client server applications.
Open Inf. Syst. 10(1), 3 (1995)

22. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-
Oriented Software. Longman Publishing Co. ed., Inc., Boston,
Addison Wesley, USA (1995)

23. Oracle Inc. Core J2EE Patterns: Data Access Object (http://java.
sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.
html). Core J2EE Pattern Catalog 2001 [cited 11/04/2012]

24. Van der Aalst, W.M.P., et al.: ProM : The Process Mining Toolkit.
In: 7th International Conference on Business Process Manage-
ment (BPM’09)–Demonstration Track, pp. 1–4. Springer, Ger-
many (2009)

25. Fluxicon Process Laboratories, XES 1.0 Standard Definitio (Exten-
sible Event Stream). http://www.xes-standard.org/ (2009)

26. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. Empirical Softw. Eng.
14(2), 131–164 (2009)

27. Yin, R.K.: Case Study Research. Design and Methods, 3rd edn.
Sage, London (2003)

28. Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process min-
ing: an experimental evaluation. Data Min. Knowl. Discov. 14(2),
245–304 (2007)

Author Biographies

Ricardo Pérez-Castillo holds
the Ph.D. degree in Computer
Science from the University of
Castilla-La Mancha (Spain). He
works at the Information Sys-
tems and Technologies Insti-
tute at University of Castilla-La
Mancha. His research intererests
include architecture-driven mod-
ernization, model-driven
development, business process
archeology and service science.
Ricardo has published more than
40 refereed papers, for example,
in Enterprise Information Sys-

tems, Systems and Software, Information & Software Technology,
Computer Standards & Interfaces, among others.

123

http://alarcos.esi.uclm.es/per/rpdelcastillo/CorrelationExp.html#correlation
http://alarcos.esi.uclm.es/per/rpdelcastillo/CorrelationExp.html#correlation
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.xes-standard.org/

Assessing event correlation in non-process-aware information systems 1139

Barbara Weber is an associate
professor at the University of
Innsbruck (Austria). Barbara is a
member of the Quality Engineer-
ing (QE) Research Group and
head of the Research Cluster on
Business Processes and Work-
flows at QE. Barbara holds a
Habilitation degree in Computer
Science and Ph.D. in Economics
from the University of Innsbruck.
Her main research interests are
agile and flexible processes, inte-
grated process lifecycle support,
intelligent user support in flexi-

ble systems and process modeling. Barbara has published more than
70 refereed papers, for example, in Data & Knowledge Engineering,
Computers in Industry, Science of Computer Programming, Enterprise
Information Systems and IET Software. Moreover, Barbara is organizer
of the successful BPI workshop series.

Ignacio García-Rodríguez de
Guzmán is assistant pro-
fessor at the University of
Castilla-La Mancha (Spain) and
belongs to the Alarcos Research
Group at the UCLM. He holds
the PhD degree in Computer
Science from the University
of Castilla-La Mancha. His
research interests include soft-
ware maintenance, software mod-
ernization and service-oriented
architecture.

Mario Piattini is full profes-
sor at the University of Castilla-
La Mancha (Spain). His research
interests include software qual-
ity, metrics and maintenance. He
holds the Ph.D. degree in Com-
puter Science from the Technical
University of Madrid, and leads
the Alarcos Research Group at
University of Castilla-La Man-
cha. He is certified as CISA,
CISM e CGEIT by ISACA.

Jakob Pinggera is a Ph.D. can-
didate at the University of Inns-
bruck (Austria). Jakob is a mem-
ber of Quality Engineering (QE)
Research Group and member of
the Research Cluster on Busi-
ness Processes and Workflows
at QE. Jakob received his M.Sc.
degree from the Department of
Computer Science, University of
Innsbruck in 2009. His main
research interest is the creation of
business process models. Jakob
has published more than 20 refer-
eed papers in international jour-

nals, conferences and workshops.

123

	Assessing event correlation in non-process-aware information systems
	Abstract
	1 Introduction
	1.1 Main contributions

	2 Related work
	3 Technique used to obtain event logs
	3.1 Instrumentation of traditional information systems
	3.1.1 Delimiting business processes
	3.1.2 Choosing domain code to be instrumented
	3.1.3 Mapping start and end activities
	3.1.4 Identifying candidate correlation attributes

	3.2 Collection of events
	3.3 Discovering the event correlation set
	3.3.1 Discovery of atomic conditions
	3.3.2 Discovery of conjunctive conditions

	3.4 Generating event logs

	4 Empirical study
	4.1 Background
	4.2 Design
	4.3 Case selection
	4.4 Execution and data collection
	4.4.1 Step 1: instrumentation of systems under study
	4.4.2 Step 2: collection of events
	4.4.3 Step 3: discovery of the correlation set
	4.4.4 Step 4: generation of event logs, business process discovery and conformance checking

	4.5 Analysis and interpretation
	4.5.1 Interpretation of the obtained correlation sets
	4.5.2 Comparison with results of the previous technique
	4.5.3 Performance analysis

	4.6 Validity evaluation
	4.6.1 Internal validity
	4.6.2 Construct validity
	4.6.3 External validity

	5 Conclusions
	Acknowledgments
	Appendix 1: Reference and discovered business process models
	Appendix 1: Reference and discovered business process models
	References

